
Chapter 6

Managing Information
In This Chapter

▶ Understanding the Python view of data

▶ Using operators to assign, modify, and compare data

▶ Organizing code using functions

▶ Interacting with the user

W

hether you use the term information or data to refer to the content
that applications manage, the fact is that you must provide some

means of working with it or your application really doesn’t have a purpose.
Throughout the rest of the book, you see information and data used inter-
changeably because they really are the same thing, and in real-world situ-
ations, you’ll encounter them both, so getting used to both is a good idea.
No matter which term you use, you need some means of assigning data to
variables, modifying the content of those variables to achieve specific goals,
and comparing the result you receive with desired results. This chapter
addresses all three requirements so that you can start to control data within
your applications.

It’s also essential to start working through methods of keeping your code
understandable. Yes, you could write your application as a really long proce-
dure, but trying to understand such a procedure is incredibly hard, and you’d
find yourself repeating some steps because they must be done more than
once. Functions are one way for you to package code so that it’s easier to
understand and reuse as needed.

Applications also need to interact with the user. Yes, some perfectly usable
applications are out there that don’t really interact with the user, but they’re
extremely rare and don’t really do much, for the most part. In order to pro-
vide a useful service, most applications interact with the user to discover
how the user wants to manage data. You get an overview of this process in
this chapter. Of course, you visit the topic of user interaction quite often
throughout the book because it’s an important topic.

94 Part II: Talking the Talk

Controlling How Python Views Data
As discussed in Chapter 5, all data on your computer is stored as 0s and 1s.
The computer doesn’t understand the concept of letters, Boolean values,
dates, times, or any other kind of information except numbers. In addition,
a computer’s capability to work with numbers is both inflexible and rela-
tively simplistic. When you work with a string in Python, you’re depending
on Python to translate the concept of a string into a form the computer can
understand. The storage containers that your application creates and uses in
the form of variables tell Python how to treat the 0s and 1s that the computer
has stored. So, it’s important to understand that the Python view of data isn’t
the same as your view of data or the computer’s view of data — Python acts
as an intermediary to make your applications functional.

 To manage data within an application, the application must control the way in
which Python views the data. The use of operators, packaging methods such
as functions, and the introduction of user input all help applications control
data. All these techniques rely, in part, on making comparisons. Determining
what to do next means understanding what state the data is in now as com-
pared to some other state. If the variable contains the name John now, but you
really want it to contain Mary instead, then you first need to know that it does
in fact contain John. Only then can you make the decision to change the con-
tent of the variable to Mary.

Making comparisons
Python’s main method for making comparisons is through the use of opera-
tors. In fact, operators play a major role in manipulating data as well. The
upcoming “Working with Operators” section discusses how operators work
and how you can use them in applications to control data in various ways.
Later chapters use operators extensively as you discover techniques for
creating applications that can make decisions, perform tasks repetitively,
and interact with the user in interesting ways. However, the basic idea
behind operators is that they help applications perform various types of
comparisons.

In some cases, you use some fancy methods for performing comparisons in
an application. For example, you can compare the output of two functions (as
described in the “Comparing function output” section, later in this chapter).
With Python, you can perform comparisons at a number of levels so that you
can manage data without a problem in your application. Using these tech-
niques hides detail so that you can focus on the point of the comparison and
define how to react to that comparison rather than become mired in detail.

95 Chapter 6: Managing Information

Your choice of techniques for performing comparisons affects the manner in
which Python views the data and determines the sorts of things you can do
to manage the data after the comparison is made. All this functionality might
seem absurdly complex at the moment, but the important point to remem-
ber is that applications require comparisons in order to interact with data
correctly.

Understanding how computers
make comparisons
Computers don’t understand packaging, such as functions, or any of the
other structures that you create with Python. All this packaging is for your
benefit, not the computer’s. However, computers do directly support the
concept of operators. Most Python operators have a direct corollary with a
command that the computer understands directly. For example, when you
ask whether one number is greater than another number, the computer can
actually perform this computation directly, using an operator. (The upcoming
section explains operators in detail.)

 Some comparisons aren’t direct. Computers work only with numbers. So,
when you ask Python to compare two strings, what Python actually does is
compare the numeric value of each character in the string. For example, the
letter A is actually the number 65 in the computer. A lowercase letter a has a
different numeric value — 97. As a result, even though you might see ABC as
being equal to abc, the computer doesn’t agree — it sees them as different
because the numeric values of their individual letters are different.

Working with Operators
Operators are the basis for both control and management of data within
applications. You use operators to define how one piece of data is compared
to another and to modify the information within a single variable. In fact,
operators are essential to performing any sort of math-related task and to
assigning data to variables in the first place.

 When using an operator, you must supply either a variable or an expression.
You already know that a variable is a kind of storage box used to hold data.
An expression is an equation or formula that provides a description of a math-
ematical concept. In most cases, the result of evaluating an expression is a
Boolean (true or false) value. The following sections describe operators in
detail because you use them everywhere throughout the rest of the book.

96 Part II: Talking the Talk

Defining the operators
An operator accepts one or more inputs in the form of variables or expressions,
performs a task (such as comparison or addition), and then provides an output
consistent with that task. Operators are classified partially by their effect and
partially by the number of elements they require. For example, a unary opera-
tor works with a single variable or expression; a binary operator requires two.

 The elements provided as input to an operator are called operands. The oper-
and on the left side of the operator is called the left operand, while the oper-
and on the right side of the operator is called the right operand. The following
list shows the categories of operators that you use within Python:

 ✓ Unary

 ✓ Arithmetic

 ✓ Relational

Understanding Python’s one ternary operator
A ternary operator requires three elements.
Python supports just one such operator, and
you use it to determine the truth value of an
expression. This operator takes the following
form:

TrueValue if Expression else
FalseValue

When the Expression is true, the operator
outputs TrueValue. When the expression is
false, it outputs FalseValue. As an example,
if you type

"Hello" if True else
"Goodbye"

the operator outputs a response of 'Hello'.
However, if you type

"Hello" if False else
"Goodbye"

the operator outputs a response of
'Goodbye'. This is a handy operator for times

when you need to make a quick decision and
don’t want to write a lot of code to do it.

One of the advantages of using Python is that it
normally has more than one way to do things.
Python has an alternative form of this ternary
operator — an even shorter shortcut. It takes
the following form:

(FalseValue, TrueValue)
[Expression]

As before, when Expression is true, the oper­
ator outputs TrueValue; otherwise, it outputs
FalseValue. Notice that the TrueValue
and FalseValue elements are reversed in this
case. An example of this version is

("Hello", "Goodbye")[True]

In this case, the output of the operator is
'Goodbye' because that’s the value in the
TrueValue position. Of the two forms, the first
is a little clearer, while the second is shorter.

97 Chapter 6: Managing Information

 ✓ Logical

 ✓ Bitwise

 ✓ Assignment

 ✓ Membership

 ✓ Identity

Each of these categories performs a specific task. For example, the arithme-
tic operators perform math-based tasks, while relational operators perform
comparisons. The following sections describe the operators based on the
category in which they appear.

Unary
Unary operators require a single variable or expression as input. You often
use these operators as part of a decision-making process. For example, you
might want to find something that isn’t like something else. Table 6-1 shows
the unary operators.

Table 6-1 Python Unary Operators

Operator Description Example

~ Inverts the bits in a number so that
all the 0 bits become 1 bits and vice
versa.

~4 results in a value of –5

- Negates the original value so that
positive becomes negative and vice
versa.

–(–4) results in 4 and –4
results in –4

+ Is provided purely for the sake of
completeness. This operator returns
the same value that you provide as
input.

+4 results in a value of 4

Arithmetic
Computers are known for their capability to perform complex math. However,
the complex tasks that computers perform are often based on much simpler
math tasks, such as addition. Python provides access to libraries that help
you perform complex math tasks, but you can always create your own librar-
ies of math functions using the simple operators found in Table 6-2.

98 Part II: Talking the Talk

Table 6-2 Python Arithmetic Operators

Operator Description Example

+ Adds two values together 5 + 2 = 7

- Subtracts the right operand from the left operand 5 – 2 = 3

* Multiplies the right operand by the left operand 5 * 2 = 10

/ Divides the left operand by the right operand 5 / 2 = 2.5

% Divides the left operand by the right operand and
returns the remainder

5 % 2 = 1

** Calculates the exponential value of the right operand
by the left operand

5 ** 2 = 25

// Performs integer division, in which the left operand
is divided by the right operand and only the whole
number is returned (also called floor division)

5 // 2 = 2

Relational
The relational operators compare one value to another and tell you when the
relationship you’ve provided is true. For example, 1 is less than 2, but 1 is
never greater than 2. The truth value of relations is often used to make deci-
sions in your applications to ensure that the condition for performing a spe-
cific task is met. Table 6-3 describes the relational operators.

Table 6-3 Python Relational Operators

Operator Description Example

== Determines whether two values are equal. Notice that
the relational operator uses two equals signs. A mistake
many developers make is using just one equals sign,
which results in one value being assigned to another.

1 == 2 is
False

!= Determines whether two values are not equal. Some
older versions of Python allowed you to use the <> oper­
ator in place of the != operator. Using the <> operator
results in an error in current versions of Python.

1 != 2 is
True

> Verifies that the left operand value is greater than the
right operand value.

1 > 2 is
False

99 Chapter 6: Managing Information

Operator Description Example

< Verifies that the left operand value is less than the right
operand value.

1 < 2 is
True

>= Verifies that the left operand value is greater than or
equal to the right operand value.

1 >= 2 is
False

<= Verifies that the left operand value is less than or equal
to the right operand value.

1 <= 2 is
True

Logical
The logical operators combine the true or false value of variables or expres-
sions so that you can determine their resultant truth value. You use the logi-
cal operators to create Boolean expressions that help determine whether to
perform tasks. Table 6-4 describes the logical operators.

Table 6-4 Python Logical Operators

Operator Description Example

and Determines whether both operands
are true.

True and True is True

True and False is False

False and True is False

False and False is False

or Determines when one of two operands
is true.

True or True is True

True or False is True

False or True is True

False or False is False

not Negates the truth value of a single
operand. A true value becomes false
and a false value becomes true.

not True is False

not False is True

Bitwise
The bitwise operators interact with the individual bits in a number. For exam-
ple, the number 6 is actually 0b0110 in binary.

100 Part II: Talking the Talk

 If your binary is a little rusty, you can use the handy Binary to Decimal
to Hexadecimal Converter at http://www.mathsisfun.com/binary-
decimal-hexadecimal-converter.html. You need to enable JavaScript
to make the site work.

A bitwise operator would interact with each bit within the number in a spe-
cific way. When working with a logical bitwise operator, a value of 0 counts
as false and a value of 1 counts as true. Table 6-5 describes the bitwise
operators.

Table 6-5 Python Bitwise Operators

Operator Description Example

& (And) Determines whether both individual bits
within two operators are true and sets
the resulting bit to true when they are.

0b1100 & 0b0110
= 0b0100

| (Or) Determines whether either of the indi­
vidual bits within two operators is true
and sets the resulting bit to true when
one of them is.

0b1100 | 0b0110 =
0b1110

^ (Exclusive
or)

Determines whether just one of the indi­
vidual bits within two operators is true
and sets the resulting bit to true when
one is. When both bits are true or both
bits are false, the result is false.

0b1100 ^ 0b0110 =
0b1010

~ (One’s
complement)

Calculates the one’s complement value
of a number.

~0b1100 =
–0b1101

~0b0110 =
–0b0111

<< (Left
shift)

Shifts the bits in the left operand left by
the value of the right operand. All new
bits are set to 0 and all bits that flow off
the end are lost.

0b00110011 << 2 =
0b11001100

>> (Right
shift)

Shifts the bits in the left operand right by
the value of the right operand. All new
bits are set to 0 and all bits that flow off
the end are lost.

0b00110011 >> 2 =
0b00001100

101 Chapter 6: Managing Information

Assignment
The assignment operators place data within a variable. The simple assign-
ment operator appears in previous chapters of the book, but Python offers
a number of other interesting assignment operators that you can use. These
other assignment operators can perform mathematical tasks during the
assignment process, which makes it possible to combine assignment with a
math operation. Table 6-6 describes the assignment operators. For this par-
ticular table, the initial value of MyVar in the Example column is 5.

Table 6-6 Python Assignment Operators

Operator Description Example

= Assigns the value found in the right oper­
and to the left operand.

MyVar = 2 results in
MyVar containing 2

+= Adds the value found in the right operand
to the value found in the left operand and
places the result in the left operand.

MyVar += 2 results
in MyVar contain­
ing 7

-= Subtracts the value found in the right
operand from the value found in the left
operand and places the result in the left
operand.

MyVar ­= 2 results
in MyVar contain­
ing 3

*= Multiplies the value found in the right oper­
and by the value found in the left operand
and places the result in the left operand.

MyVar *= 2 results
in MyVar contain­
ing 10

/= Divides the value found in the left operand
by the value found in the right operand and
places the result in the left operand.

MyVar /= 2 results
in MyVar contain­
ing 2.5

%= Divides the value found in the left operand
by the value found in the right operand and
places the remainder in the left operand.

MyVar %= 2 results
in MyVar contain­
ing 1

**= Determines the exponential value found in
the left operand when raised to the power
of the value found in the right operand and
places the result in the left operand.

MyVar **= 2 results
in MyVar contain­
ing 25

//= Divides the value found in the left operand
by the value found in the right operand and
places the integer (whole number) result in
the left operand.

MyVar //= 2 results
in MyVar contain­
ing 2

102 Part II: Talking the Talk

Membership
The membership operators detect the appearance of a value within a list or
sequence and then output the truth value of that appearance. Think of the
membership operators as you would a search routine for a database. You
enter a value that you think should appear in the database, and the search
routine finds it for you or reports that the value doesn’t exist in the database.
Table 6-7 describes the membership operators.

Table 6-7 Python Membership Operators

Operator Description Example

In Determines whether the value
in the left operand appears in
the sequence found in the right
operand.

“Hello” in “Hello Goodbye”
is True

not in Determines whether the value in
the left operand is missing from
the sequence found in the right
operand.

“Hello” not in “Hello
Goodbye” is False

Identity
The identity operators determine whether a value or expression is of a cer-
tain class or type. You use identity operators to ensure that you’re actually
working with the sort of information that you think you are. Using the identity
operators can help you avoid errors in your application or determine the sort
of processing a value requires. Table 6-8 describes the identity operators.

Table 6-8 Python Identity Operators

Operator Description Example

Is Evaluates to true when the type of the value or
expression in the right operand points to the
same type in the left operand.

type(2) is int
is True

is not Evaluates to true when the type of the value or
expression in the right operand points to a differ­
ent type than the value or expression in the left
operand.

type(2) is not
int is False

103 Chapter 6: Managing Information

Understanding operator precedence
When you create simple statements that contain just one operator, the order
of determining the output of that operator is also simple. However, when you
start working with multiple operators, it becomes necessary to determine
which operator to evaluate first. For example, it’s important to know whether
1 + 2 * 3 evaluates to 7 (where the multiplication is done first) or 9 (where
the addition is done first). An order of operator precedence tells you that the
answer is 7 unless you use parentheses to override the default order. In this
case, (1 + 2) * 3 would evaluate to 9 because the parentheses have a higher
order of precedence than multiplication does. Table 6-9 defines the order of
operator precedence for Python.

Table 6-9 Python Operator Precedence

Operator Description

() You use parentheses to group expressions
and to override the default precedence so
that you can force an operation of lower
precedence (such as addition) to take pre­
cedence over an operation of higher prece­
dence (such as multiplication).

** Exponentiation raises the value of the left
operand to the power of the right operand.

~ + - Unary operators interact with a single vari­
able or expression.

* / % // Multiply, divide, modulo, and floor division.

+ - Addition and subtraction.

>> << Right and left bitwise shift.

& Bitwise AND.

^ | Bitwise exclusive OR and standard OR.

<= < > >= Comparison operators.

== != Equality operators.

= %= /= //= -= += *=
**=

Assignment operators.

Is

is not

Identity operators.

In

not in

Membership operators.

not or and Logical operators.

104 Part II: Talking the Talk

Creating and Using Functions
To manage information properly, you need to organize the tools used to perform
the required tasks. Each line of code that you create performs a specific task,
and you combine these lines of code to achieve a desired result. Sometimes you
need to repeat the instructions with different data, and in some cases your code
becomes so long that it’s hard to keep track of what each part does. Functions
serve as organization tools that keep your code neat and tidy. In addition, func-
tions make it easy to reuse the instructions you’ve created as needed with
different data. This section of the chapter tells you all about functions. More
important, in this section you start creating your first serious applications in
the same way that professional developers do.

Viewing functions as code packages
You go to your closet, open the door, and everything spills out. In fact, it’s an
avalanche, and you’re lucky that you’ve survived. That bowling ball in the
top shelf could have done some severe damage! However, you’re armed with
storage boxes and soon you have everything in the closet in neatly organized
boxes. The shoes go in one box, games in another, and old cards and let-
ters in yet another. After you’re done, you can find anything you want in the
closet without fear of injury. Functions are just like that — they take messy
code and place it in packages that make it easy to see what you have and
understand how it works.

 Commentaries abound on just what functions are and why they’re necessary,
but when you boil down all that text, it comes down to a single idea: Functions
provide a means of packaging code to make it easy to find and access. If you
can think of functions as organizers, you find that working with them is much
easier. For example, you can avoid the problem that many developers have of
stuffing the wrong items in a function. All your functions will have a single pur-
pose, just like those storage boxes in the closet.

Understanding code reusability
You go to your closet, take out pants and shirt, remove the labels, and
put them on. At the end of the day, you take everything off and throw it in
the trash. Hmmm . . . That really isn’t what most people do. Most people
take the clothes off, wash them, and then put them back into the closet
for reuse. Functions are reusable, too. No one wants to keep repeating the
same task; it becomes monotonous and boring. When you create a function,

105 Chapter 6: Managing Information

you define a package of code that you can use over and over to perform the
same task. All you need to do is tell the computer to perform a specific task
by telling it which function to use. The computer faithfully executes each
instruction in the function absolutely every time you ask it to do so.

 When you work with functions, the code that needs services from the func-
tion is named the caller, and it calls upon the function to perform tasks for
it. Much of the information you see about functions refers to the caller. The
caller must supply information to the function, and the function returns
information to the caller.

At one time, computer programs didn’t include the concept of code reusabil-
ity. As a result, developers had to keep reinventing the same code. It didn’t
take long for someone to come up with the idea of functions, though, and the
concept has evolved over the years until functions have become quite flex-
ible. You can make functions do anything you want. Code reusability is a nec-
essary part of applications to

 ✓ Reduce development time

 ✓ Reduce programmer error

 ✓ Increase application reliability

 ✓ Allow entire groups to benefit from the work of one programmer

 ✓ Make code easier to understand

 ✓ Improve application efficiency

In fact, functions do a whole list of things for applications in the form of reus-
ability. As you work through the examples in this book, you see how reus-
ability makes your life significantly easier. If not for reusability, you’d still be
programming by plugging 0s and 1s into the computer by hand.

Defining a function
Creating a function doesn’t require much work. Python tends to make things
fast and easy for you. The following steps show you the process of creating a
function that you can later access:

 1. Open a Python Shell window.

 You see the familiar Python prompt.

 2. Type def Hello(): and press Enter.

106 Part II: Talking the Talk

 This step tells Python to define a function named Hello. The parenthe-
ses are important because they define any requirements for using the
function. (There aren’t any requirements in this case.) The colon at the
end tells Python that you’re done defining the way in which people will
access the function. Notice that the insertion pointer is now indented,
as shown in Figure 6-1. This indentation is a reminder that you must give
the function a task to perform.

Figure 6-1:

Define
the name

of your
function.

 3. Type print(“This is my first Python function!”) and press Enter.

 You should notice two things, as shown in Figure 6-2. First, the insertion
pointer is still indented because IDLE is waiting for you to provide the
next step in the function. Second, Python hasn’t executed the print()
function because it’s part of a function and is not in the main part of the
window.

Figure 6-2:

IDLE is
waiting for

your next
instruction.

 4. Press Enter.

 The function is now complete. You can tell because the insertion point
is now to the left side, as shown in Figure 6-3. In addition, the Python
prompt (>>>) has returned.

107 Chapter 6: Managing Information

Figure 6-3:

The function
is complete,

and IDLE
waits for

you to pro­
vide another

instruction.

Even though this is a really simple function, it demonstrates the pattern
you use when creating any Python function. You define a name, provide any
requirements for using the function (none in this case), and provide a series
of steps for using the function. A function ends when an extra line is added
(you press Enter twice).

 Working with functions in the Edit window is the same as working with them
in the Python Shell window, except that you can save the Edit window content
to disk. This example also appears with the downloadable source code as
FirstFunction.py. Try loading the file into an Edit window using the same
technique you use in the “Using the Edit window” section of Chapter 4.

Accessing functions
After you define a function, you probably want to use it to perform useful
work. Of course, this means knowing how to access the function. In the previ-
ous section, you create a new function named Hello(). To access this func-
tion, you type Hello() and press Enter. Figure 6-4 shows the output you see
when you execute this function.

Figure 6-4:

Whenever
you type
the func­

tion’s name,
you get the
output the

function
provides.

108 Part II: Talking the Talk

Every function you create will provide a similar pattern of usage. You type the
function name, an open parenthesis, any required input, and a close parenthesis;
then you press Enter. In this case, you have no input, so all you type is Hello().
As the chapter progresses, you see other examples for which input is required.

Sending information to functions
The FirstFunction.py example is nice because you don’t have to keep
typing that long string every time you want to say Hello(). However, it’s
also quite limited because you can use it to say only one thing. Functions
should be flexible and allow you to do more than just one thing. Otherwise,
you end up writing a lot of functions that vary by the data they use rather
than the functionality they provide. Using arguments helps you create func-
tions that are flexible and can use a wealth of data.

Understanding arguments
The term argument doesn’t mean that you’re going to have a fight with the
function; it means that you supply information to the function to use in pro-
cessing a request. Perhaps a better word for it would be input, but the term
input has been used for so many other purposes that developers decided to
use something a bit different: argument. Although the purpose of an argu-
ment might not be clear from its name, understanding what it does is rela-
tively straightforward. An argument makes it possible for you to send data
to the function so that the function can use it when performing a task. Using
arguments makes your function more flexible.

The Hello() function is currently inflexible because it prints just one string.
Adding an argument to the function can make it a lot more flexible because
you can send strings to the function to say anything you want. To see how
arguments work, create a new function in the Python Shell window (or open
the Arguments01.py file of the downloadable source; see the Introduction
for the URL). This version of Hello(), Hello2(), requires an argument:

def Hello2(Greeting):
 print(Greeting)

Notice that the parentheses are no longer empty. They contain a word,
Greeting, which is the argument for Hello2(). The Greeting argument is
actually a variable that you can pass to print() in order to see it onscreen.

Sending required arguments
You have a new function, Hello2(). This function requires that you provide
an argument to use it. At least, that’s what you’ve heard so far. Type Hello2()
and press Enter in the Python Shell window. You see an error message, as
shown in Figure 6-5, telling you that Hello2() requires an argument.

109 Chapter 6: Managing Information

Figure 6-5:

You must
supply an
argument
or you get

an error
message.

Not only does Python tell you that the argument is missing, it tells you the
name of the argument as well. Creating a function the way you have done so
far means that you must supply an argument. Type Hello2(“This is an inter-
esting function.”) and press Enter. This time, you see the expected output.
However, you still don’t know whether Hello2() is flexible enough to print
multiple messages. Type Hello2(“Another message...”) and press Enter. You
see the expected output again, as shown in Figure 6-6, so Hello2() is indeed
an improvement over Hello().

Figure 6-6:

Use
Hello2()

to print any
message

you desire.

110 Part II: Talking the Talk

You might easily to assume that Greeting will accept only a string from the
tests you have performed so far. Type Hello2(1234), press Enter, and you see
1234 as the output. Likewise, type Hello2(5 + 5) and press Enter. This time
you see the result of the expression, which is 10.

Sending arguments by keyword
As your functions become more complex and the methods to use them do as
well, you may want to provide a little more control over precisely how you
call the function and provide arguments to it. Up until now, you have posi-
tional arguments, which means that you have supplied values in the order in
which they appear in the argument list for the function definition. However,
Python also has a method for sending arguments by keyword. In this case,
you supply the name of the argument followed by an equals sign (=) and the
argument value. To see how this works, open a Python Shell window and type
the following function (which is also found in the Arguments02.py file):

def AddIt(Value1, Value2):
 print(Value1, " + ", Value2, " = ", (Value1 + Value2))

Notice that the print() function argument includes a list of items to print
and that those items are separated by commas. In addition, the arguments
are of different types. Python makes it easy to mix and match arguments in
this manner.

Time to test AddIt(). Of course, you want to try the function using posi-
tional arguments first, so type AddIt(2, 3) and press Enter. You see the
expected output of 2 + 3 = 5. Now type AddIt(Value2 = 3, Value1 = 2) and
press Enter. Again, you receive the output 2 + 3 = 5 even though the posi-
tion of the arguments has been reversed.

Giving function arguments a default value
Whether you make the call using positional arguments or keyword argu-
ments, the functions to this point have required that you supply a value.
Sometimes a function can use default values when a common value is avail-
able. Default values make the function easier to use and less likely to cause
errors when a developer doesn’t provide an input. To create a default value,
you simply follow the argument name with an equals sign and the default
value. To see how this works, open a Python Shell window and type the fol-
lowing function (which you can also find in the Arguments03.py file):

def Hello3(Greeting = "No Value Supplied"):
 print(Greeting)

111 Chapter 6: Managing Information

This is yet another version of the original Hello() and updated Hello2()
functions, but Hello3() automatically compensates for individuals who
don’t supply a value. When someone tries to call Hello3() without an argu-
ment, it doesn’t raise an error. Type Hello3() and press Enter to see for your-
self. Type Hello3(“This is a string.”) to see a normal response. Lest you think
the function is now unable to use other kinds of data, type Hello3(5) and
press Enter; then Hello3(2 + 7) and press Enter. Figure 6-7 shows the output
from all these tests.

Figure 6-7:

Supply
default

arguments
when possi­
ble to make

your func­
tions easier

to use.

Creating functions with a variable number of arguments
In most cases, you know precisely how many arguments to provide with
your function. It pays to work toward this goal whenever you can because
functions with a fixed number of arguments are easier to troubleshoot later.
However, sometimes you simply can’t determine how many arguments the
function will receive at the outset. For example, when you create a Python
application that works at the command line, the user might provide no argu-
ments, the maximum number of arguments (assuming there is one), or any
number of arguments in between.

Fortunately, Python provides a technique for sending a variable number of
arguments to a function. You simply create an argument that has an asterisk
in front of it, such as *VarArgs. The usual technique is to provide a second
argument that contains the number of arguments passed as an input. Here is
an example (also found in the VarArgs.py file) of a function that can print a
variable number of elements. (Don’t worry too much if you don’t understand it
completely now — you haven’t seen some of these techniques used before.)

112 Part II: Talking the Talk

def Hello4(ArgCount, *VarArgs):
 print("You passed ", ArgCount, " arguments.")
 for Arg in VarArgs:
 print(Arg)

This example uses something called a for loop. You meet this structure in
Chapter 8. For now, all you really need to know is that it takes the arguments
out of VarArgs one at a time, places the individual argument into Arg, and
then prints Arg using print(). What should interest you most is seeing how
a variable number of arguments can work.

After you type the function into a new Python Shell window, type Hello4(1, “A
Test String.”) and press Enter. You should see the number of arguments and the
test string as output — nothing too exiting there. However, now type Hello4(3,
“One”, “Two”, “Three”) and press Enter. As shown in Figure 6-8, the function
handles the variable number of arguments without any problem at all.

Figure 6-8:

Variable
argument

func­
tions can

make your
applica­

tions more
flexible.

Returning information from functions
Functions can display data directly or they can return the data to the caller so
that the caller can do something more with it. In some cases, a function dis-
plays data directly as well as returns data to the caller, but it’s more common
for a function to either display the data directly or to return it to the caller.

113 Chapter 6: Managing Information

Just how functions work depends on the kind of task the function is supposed
to perform. For example, a function that performs a math-related task is more
likely to return the data to the caller than certain other functions.

To return data to a caller, a function needs to include the keyword return,
followed by the data to return. You have no limit on what you can return to
a caller. Here are some types of data that you commonly see returned by a
function to a caller:

 ✓ Values: Any value is acceptable. You can return numbers, such as 1 or 2.5;
strings, such as “Hello There!”; or Boolean values, such as True or False.

 ✓ Variables: The content of any variable works just as well as a direct
value. The caller receives whatever data is stored in the variable.

 ✓ Expressions: Many developers use expressions as a shortcut. For exam-
ple, you can simply return A + B rather than perform the calculation,
place the result in a variable, and then return the variable to the caller.
Using the expression is faster and accomplishes the same task.

 ✓ Results from other functions: You can actually return data from another
function as part of the return of your function.

It’s time to see how return values work. Open a Python Shell window and
type the following code (or open the ReturnValue.py file instead):

def DoAdd(Value1, Value2):
 return Value1 + Value2

This function accepts two values as input and then returns the sum of those
two values. Yes, you could probably perform this task without using a function,
but this is how many functions start. To test this function, type print(“The sum
of 3 + 4 is ”, DoAdd(3, 4)) and press Enter. You see the expected output shown
in Figure 6-9.

Figure 6-9:

Return
values can
make your
functions

even more
useful.

114 Part II: Talking the Talk

Comparing function output
You use functions with return values in a number of ways. For example, the
previous section of this chapter shows how you can use functions to provide
input for another function. You use functions to perform all sorts of tasks.
One of the ways to use functions is for comparison purposes. You can actu-
ally create expressions from them that define a logical output.

To see how this might work, use the DoAdd() function from the previous
 section. Type print(“3 + 4 equals 2 + 5 is ”, (DoAdd(3, 4) == DoAdd(2, 5)))
and press Enter. You see the truth value of the statement that 3 + 4 equals
2 + 5, as shown in Figure 6-10. The point is that functions need not provide
just one use or that you view them in just one way. Functions can make your
code quite versatile and flexible.

Figure 6-10:

Use your
functions to

perform a
wide variety

of tasks.

Getting User Input
Very few applications exist in their own world — that is, apart from the user.
In fact, most applications interact with users in a major way because comput-
ers are designed to serve user needs. To interact with a user, an application
must provide some means of obtaining user input. Fortunately, the most
commonly used technique for obtaining input is also relatively easy to imple-
ment. You simply use the input() function to do it.

115 Chapter 6: Managing Information

 The input() function always outputs a string. Even if a user types a number,
the output from the input() function is a string. This means that if you are
expecting a number, you need to convert it after receiving the input. The
input() function also lets you provide a string prompt. This prompt is dis-
played to tell the user what to provide in the way of information.

The Input01.py file contains an example of using the input() function in a
simple way. Here’s the code for that example:

Name = input("Tell me your name: ")
print("Hello ", Name)

In this case, the input() function asks the user for a name. After the user
types a name and presses Enter, the example outputs a customized greeting
to the user. Try running this example at the command prompt or the Python
Shell window. Figure 6-11 shows typical results when you input John as the
username.

Figure 6-11:

Provide a
username
and see a

greeting as
output.

You can use input() for other kinds of data; all you need is the correct con-
version function. For example, the code in the Input02.py file provides one
technique for performing such a conversion, as shown here:

ANumber = float(input("Type a number: "))
print("You typed: ", ANumber)

When you run this example, the application asks for a numeric input. The call
to float() converts the input to a number. After the conversion, print()
outputs the result. When you run the example using a value such as 5.5, you
obtain the desired result.

116 Part II: Talking the Talk

 It’s important to understand that data conversion isn’t without risk. If you
attempt to type something other than a number, you get an error message, as
shown in Figure 6-12. Chapter 9 helps you understand how to detect and fix
errors before they cause a system crash.

Figure 6-12:

Data con­
version

changes the
input type

to whatever
you need,
but could

cause
errors.

